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Abstract 

Orientation relationships between two crystal lattices 
are frequently specified in terms of parallel directions 
and planes in each lattice. The corresponding matrix, 
relating the vector bases of the lattices, can be 
obtained by a general method involving the metric 
matrices of the two lattices and the crystallographic 
indices of parallel planes and directions. Equivalent 
matrices can be defined by changing the lattice bases: 
different selections of the invariants of such matrices 
are indicated. Finally, criteria for choosing the 'best' 
matrix relating the two lattices are discussed in the 
context of phase transformations and of interfacial 
structure. 

1. Introduction 

There are various situations where it is of interest to 
specify the relative orientation of two crystal lattices; 
for example, when the two crystals meet at an inter- 
face or when one of the crystals is phase transformed 
into the other. Frequently, the relative orientation is 
defined by indicating the crystallographic indices of 
planes or directions, in each lattice, that are parallel 
to each other. The possibilities are: two pairs of 
parallel directions; two pairs of parallel planes; one 
pair of directions and one pair of planes, this being 
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the more commonly used. However, the most con- 
venient and formally simpler way of specifying the 
relative orientation of two lattices with bases (el, e2, 
e3) -= (e) and (el, e~, e~) - (e'), respectively, is in terms 
of the 3 x 3 matrix X that relates the two bases: 

[el e~ e~] = [e, e2 e3]X (1) 
or  

e'= eX. (2) 

In these equations, [el e2 e3]----e is tO be regarded as 
a row matrix. When the orientation matrix X is 
known, one can determine the angles between any 
directions or planes in the two lattices and find a 
correlation between the lattices in terms of the 
product of a pure rotation and a pure deformation 
(e.g. Christian, 1975). One can also study the possibil- 
ity of coincident points between the two lattices and 
whether such points define a three-, two- or one- 
dimensional lattice and determine the degree of 
coincidence in each case. Methods of solving these 
problems have been developed by Grimmer (1976) 
and Fortes (1983b). Finally, it is possible to determine 
the 0-lattice from the matrix X (Bollman, 1970) and 
calculate the misfit dislocation content of an interface 
between the two crystals (Bollmann, 1970; Knowles, 
1982). 
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In this paper we develop a method for determining 
the matrix X from the parallelism of directions and 
planes, and discuss the special matrices equivalent to 
X that can be selected to characterize the relative 
orientation. 

2. Determination of the orientation matrix 

Suppose that two directions, defined by their crys- 
tallographic indices in each latt!ce, are parallel: 

[h~ h2 h3]ll[h'~ hl hl]. (3) 

To treat the more complicated and more common 
case suppose that, in addition, the following planes, 
defined by their Miller indices in each lattice, are 
parallel 

(u, u2 u3)ll(u', u; u;). (4) 
From the known bases (e) and (e') of the two lattices 

we obtain the metric matrices G, G'. For example, 
G = (gu) with gu = ei. ej. It may be useful to express 
the bases in an orthonormal reference system, 
(ol o2 %). For example, for the basis (e): 

e = o P  

and 

G = P T P ,  

where pT is the transpose of P. The reciprocal lattices 
have bases (r), (r'), respectively, defined by 

r = e G  -l 
(5) 

r' = e 'G '-~, 

where, as before, r = [rl r2 r3]. The reciprocal bases 
are related by 

r ' =  r ( X r )  -l (6) 

Denoting by h = {hi} a column vector with elements 
hl, h2, h3, (3) is equivalent to 

eh = Ae'h' (7) 

where I is a real number which relates the moduli 
of the two vectors. Since the square of the modulus 
of h = eh is h TGh, A can be determined from 

h rGh = A 2h'r G'h'. (8) 

Relation (4) can be written in terms of vectors of 
the reciprocal lattices: 

ru =/zr 'u '  (9) 

because the vector u = ru is perpendicular to the plane 
with indices (u~ Uz u3); u is a column vector with 
elements u~, u2, u3. Since G - '  is the metric matrix of 
the reciprocal lattice (r),/x is determined from 

u T ( ~ - I U  = Id,2u'T G'- - I  U '. (10) 

Both I and /x can be taken as positive. Note that 
hru=h 'Tu '=O.  

Combining (2) with (7) and (5) with (9) we obtain 
the following equations for X: 

h = A X h '  (11) 

U = I. .L(x T ) - I  u '. (12) 

These equations can be written in the equivalent form 

X h ' = ( 1 / A ) h  (13) 

XG'-~ u'= (1/ lz )G-~ u, (14) 

where, for the last equation, we have used the relation 
X T = G , X  -1G -l. 

We introduce two vectors k and k', with com- 
ponents k and k' in the bases (e) and (e'), respectively, 
such that 

G-mu=k  
(15) 

G'-I u = k'. 

The vectors k and k' are parallel by virtue of (14). 
Now, if a and b are two vectors of a lattice (e), 

their cross product can be determined from the sym- 
bolic determinant rule as 

ri 
a x b = g 2  al 

bl 

where 

r2 r3 

a2 a3 
b2 b3 

(16) 

f2 = (det G) '/z. (17) 

Using this rule we may calculate the cross products 

y = h × k  
(18) 

y' = h' x k'. 

Since the vectors h, h' and k, k' are parallel, y is 
parallel to y' and we write 

ry = ~r'y' (19) 

with 

=/zAg2'/g2. (20) 

Comparing this with (9) and (14) we may obtain 
from (19) 

XG'-~y '=(1 /~)G-1y ,  (21) 

which, together with (13) and (14), 

X h ' = ( 1 / A ) h  (13) 

X G ' - '  u'= (1/ Ix )G- '  u, (14) 

completely determine X. In order to obtain X 
explicitly we construct two matrices M and M' ,  the 
columns of which are, in the same order, the column 
vectors in the second and first members, respectively, 
of (13), (14) and (21), that is, symbolically 

(1 ly) M =  h --1 G-~u G -  (22) 

M ' = ( h '  G'-~u ' G'-~y'). (23) 
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We then have 4. 

X = M M  '-1. (24) 

To summarize, the matrix X relating the two lattice 
bases can be determined as follows: M = 

1. Calculate h. (for directions) and/x (for planes), 
respectively, from (8) and (10). 

2. For planes, determine the vectors k and k' from 
(15). 

3. Determine the cross products y, y' from (16) and 
the value s c from (20). 

4. Construct the matrices M, M'  as defined in (22) 
and (23). 

5. Obtain X from (24). 5. 
If the relative orientation is defined by the parallel- 

ism of two pairs of directions or two pairs of planes, 
the alterations that have to be made in the method X - -  
are obvious. 

3. Example of application 

The relative orientation between austenite and ferrite 
in the martensitic transformation in steels is 
frequently defined by the relations (Kurdjumov & 
Sachs, 1930) 

(111)~11(110)i 

[1TO]alI[1T1}s. 

These indices are referred to conventional cubic bases 
in both lattices, (a) and (f), with lattice parameters 
a and 9, respectively for austenite and ferrite. If the 
volume change is negligible, 

0 , / 9  =2113 . 

We follow the various steps outlined above, identify- 
ing (e) with austenite, to find the matrix X in 

f = a X .  

Note that G = a2I  and G ' =  92I where I is the iden- 
tity matrix. 

. 

,x = ( 2 / 3 ) ' / 2 ( a / 9 ) ;  tz = ( 3 / 2 ) ' / 2 ( 9 / a ) .  

['] 1 k , = l  1 

1 

y=c~ Y ' = 9  ~ =  93/0£  3 . 

O~ 90~ 93 

0 

i1 M ' =  -1 

1 

9~ 

0£2 
9 3 

2~ ~ 
9 3 

1/9 2 -1/9-] 
1/9 ~ i / , / .  

o 2191 

2 d l l  -1  
1 2 d - 1  

(6d)2/3 [_ d - 2  d +2 

d = 6 1 / 2 ( ~ )  3. 

- d -  ; 

4 

If, instead of conventional bases, we had used 
(true) primitive bases for both lattices, the matrix 
relating these bases could easily be obtained from X. 
In either case, the orientation matrices are not 
rational, implying that the two lattices are not in a 
coincidence site lattice orientation (e.g. Fortes, 
1983b). However, for particular values of 9 /a ,  coin- 
cidence can occur in one direction (but not in two 
directions, i.e. on a plane). For example, if 9 / a  is 
rational, coincidence occurs in the direction [T12]r , 
which is parallel to [112]a, but the density of coin- 
cidence sites will be very small for the usual values 
of 9/a .  It is therefore unlikely that coincidence of 
lattice sites in the two crystals plays any role in the 
phase transformation. 

4. Equivalent descriptions 

The matrix X obtained by the method of §2 refers to 
the particular bases (e) and (e') in the two lattices 
used to specify the indices of planes and directions 
that are palallel. Let us now take new bases ~ and ~' 
related to the original bases by 

~ = e T  
(25) 

~' = e' T'. 

The matrices T and T' have integral coefficients and 
the absolute value of their determinants is unity. Such 
matrices can be termed 1-matrices (Fortes, 1983a). 
The transformation between the two lattices is now 
described by a matrix X related to the original matrix 
X by 

f~= T-~XT';  ~' = ~ ' .  (26) 

Note that T -1 is also a 1-matrix. 
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We shall discuss the two following questions: (i) 
what do the various equivalent matrices X have in 
common?; (ii) what criteria can be used to choose a 
particular matrix X?  

The transformation X between the two lattices can 
be decomposed in the product of a deformation, D, 
and a rotation, R 

X=RD. (27) 

The determination of R and D is discussed by Chris- 
tian (1975). The rotation can be specified by an 
axis/angle pair (involving three scalar parameters) 
and the deformation by indication of the principal 
strain directions (three parameters) and values (three 
parameters). These nine parameters are in general 
invariant in a change of bases and can be used to 
characterize the relative orientation. When the lattices 
admit symmetry rotations, there are matrices T and 
T' that are rotation matrices; the axis/angle pair is 
not invariant in such cases. Grimmer (1980) 
developed a method that allows a unique description 
of the relative rotation for two identical lattices. 

When the matrix X is rational (rational elements) 
it can be put in a diagonal form by a change of bases 
(Fortes, 1983a). Since any matrix can be approxi- 
mated by a rational matrix, the diagonalization is 
possible in all cases. It implies the parallelism of three 
pairs of lattice directions with commensurate identity 
distances in each pair. These directions can be 
specified by six parameters which together with the 
values of the diagonal elements completely define the 
relative orientation. 

Knowles (1982) and Knowles & Smith (1982) have 
reviewed and discussed the various possibilities of 
choice of the transformation matrix which are rel- 
evant to the determination of the structure and 
properties of crystalline interfaces. In this case, the 
important quantities are those related to the misfit 
dislocation content of the interface. 

When dealing with phase transformations other 
types of criteria are usually introduced, related to the 
decomposition of the orientation matrix in rotation 
and deformation (Christian, 1975; Dahmen, 1982). 
An alternative criterion is to choose a matrix X that 
relates nearest neighbours in the two lattices. This 
has been discussed by Bollmann (1970) but some 
points of his analysis need clarification. 

Assuming that the two lattices have a common 
point 0, we take primitive cells in each lattice with 
the common corner 0 and with a correspondence 
defined by a matrix X. Pairs of corresponding points, 

i, in two lattices have their relative positions defined 
by vectors ti. The problem consists of finding the unit 
cells and the matrix X that minimizes some 'proxim- 
ity' function of the ti for the pairs of points in a 
specified region including 0. This function may simply 
be the sum of the moduli of the vectors t~ for the 
eight corners of the unit cells at 0. Methods of solving 
this particular problem were delineated by Bollmann 
(1970). A more general approach along this line 
would be to allow for a relative rigid-body translation 
of the two lattices, to, and minimize a proximity 
function of t~ +to with respect to the bases and to the 
translation to. 

An alternative criterion of proximity is to consider 
the volume of the parallelepiped defined by the three 
vectors t~ relative to the end points of the base vectors: 

ti=e.~--e,=ei(ff(--l)=el(l--)(-I) ( i = 1 , 2 , 3 ) .  (28) 

This then leads to the following equivalent conditions 
for X: 

I d e t ( ~ ' - I ) l  or I d e t ( l - , ~ - ~ ) l  minimum. (29) 

The latter condition was given by Bollmann (1970) 
but he did not give a method for determining ~'. From 
(26) and with the fact that the product of two 1- 
matrices is a 1-matrix, (29) is equivalent to finding a 
1-matrix U such that 

[det ( X -  U)[ minimum. (30) 

Any decomposition of U in the form U -- TT'-~ gives 
the required matrix X -- T - I X T  '. A unique decompo- 
sition exists if one of the bases is fixed. It may happen 
that the minimum value of (30) is zero, implying that 
a pair of unit vectors in the two lattices coincide. In 
this case the nearest-neighbour relation can be 
obtained by solving a similar problem with rank two 
matrices in order to find the two other base vectors. 
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